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Abstract 25 

Meta-d′/d′ has become the quasi-gold standard to quantify metacognitive efficiency 26 

because meta-d′/d′ was developed to control for discrimination performance, discrimination 27 

criteria, and confidence criteria even without the assumption of a specific generative model 28 

underlying confidence judgments. Using simulations, we demonstrate that meta-d′/d′ is not free 29 

from assumptions about confidence models: Only when we simulated data using a generative 30 

model of confidence according to which the evidence underlying confidence judgements is 31 

sampled independently from the evidence utilized in the choice process from a truncated 32 

Gaussian distribution, meta-d′/d′ was unaffected by discrimination performance, discrimination 33 

task criteria, and confidence criteria. According to five alternative generative models of 34 

confidence, there exist at least some combination of parameters where meta-d′/d′ is affected by 35 

discrimination performance, discrimination criteria and confidence criteria. A simulation using 36 

empirically fitted parameter sets showed that the magnitude of the correlation between meta-d′/d′ 37 

and discrimination performance, discrimination task criteria, and confidence criteria depends 38 

heavily on the generative model and the specific parameter set and varies between negligibly 39 

small and very large. These simulations imply that a difference in meta-d′/d′ between conditions 40 

does not necessarily reflect a difference in metacognitive efficiency but might as well be caused 41 

by a difference in discrimination performance, discrimination task criterion, or confidence 42 

criteria.  43 

Keywords: Metacognition, metacognitive efficiency, confidence, cognitive modelling, 44 

signal detection theory, meta-d′/d′ 45 

  46 
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Metacognitive efficiency in cognitive models of decision confidence 47 

A key aspect of metacognition is metacognitive efficiency, defined as a subject’s level of 48 

metacognition given their discrimination task performance or signal processing capacity 49 

(Fleming & Lau, 2014). The gold standard to measure of metacognitive efficiency is meta-d′/d′ 50 

(Maniscalco & Lau, 2012, 2014). Measuring metacognitive efficiency by meta-d′/d′ has inspired 51 

research on many different psychological concepts, including learning (Boldt et al., 2019; 52 

Hainguerlot et al., 2018; Taouki et al., 2022), cognitive control (Drescher et al., 2018), vigilance 53 

(Maniscalco et al., 2017), memory (Mazancieux et al., 2020; Vandenbroucke et al., 2014), 54 

perception (Maniscalco et al., 2016; Odegaard, Chang, et al., 2018), psychopathology (Bhome et 55 

al., 2022; Culot et al., 2021; Muthesius et al., 2022; Rouault et al., 2018), beliefs about 56 

politicised science (Fischer & Said, 2021; Said et al., 2022), and visual awareness (Charles et al., 57 

2013; Rausch & Zehetleitner, 2016; Vlassova et al., 2014). One reason why the meta-d′/d′ 58 

method has become so popular is that meta-d′ is believed to provide control over discrimination 59 

performance, discrimination task criteria, and confidence criteria (Maniscalco & Lau, 2012, 60 

2014), which is a key requirement for measures of metacognitive accuracy (Barrett et al., 2013). 61 

Meta-d′ is also popular because it does not explicitly assume a specific generative model for 62 

confidence judgments (Maniscalco & Lau, 2014). However, there each exists at least one 63 

generative model of confidence which implies that meta-d'/d′ is affected by discrimination 64 

performance (Guggenmos, 2021) and confidence criteria (Shekhar & Rahnev, 2021), raising the 65 

question how robust meta-d′/d′ is with respect to the control over discrimination performance, 66 

discrimination task criteria, and confidence criteria across different generative models of 67 

confidence.  68 

https://www.zotero.org/google-docs/?fgtxhq
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The meta-d′/d′ method 69 

The meta-d′/d′ method is based on signal detection theory (Green & Swets, 1966; 70 

Peterson et al., 1954; Tanner & Swets, 1954) and type 2 signal detection theory (Clarke et al., 71 

1959; Galvin et al., 2003; Pollack, 1959). The conceptual idea of meta-d′ is to quantify the 72 

accuracy of metacognition in terms of discrimination sensitivity in a hypothetical signal 73 

detection model describing the primary task, assuming participants had perfect access to the 74 

sensory evidence underlying the discrimination choice and were perfectly consistent in placing 75 

their confidence criteria (Maniscalco & Lau, 2012, 2014). Using a signal detection model 76 

describing the primary task to quantify metacognitive accuracy has the advantage of allowing a 77 

direct comparison between metacognitive accuracy and discrimination performance. Meta-d′ can 78 

be compared against the estimate of the distance between the two stimulus distributions 79 

estimated from discrimination responses, which is referred to as d′: If meta-d′ equals d′, it means 80 

that metacognitive accuracy is exactly as good as expected from discrimination performance. If 81 

meta-d′ is lower than d′, it means that metacognitive accuracy is worse than expected from 82 

discrimination performance (Fleming & Lau, 2014; Maniscalco & Lau, 2012, 2014).  83 

The hypothetical signal detection model underlying meta-d′ assumes that the observer 84 

selects a binary response 𝑅 ∈  {−1, 1} about a stimulus characterised by two classes 𝑆 ∈85 

 {−1, 1} as well as a confidence rating out of an ordered set of confidence categories 𝐶 ∊86 

 {1, 2, . . . , 𝑛} (see Table 1 for a list of our mathematical notation). For each presentation of the 87 

stimulus, the observer’s perceptual system creates sensory evidence delineating the two response 88 

options. As there is noise in the system, the sensory evidence is not constant, but modelled as a 89 

random sample x out of a separate Gaussian distribution for each of the two stimulus classes (see 90 

Fig. 1). The distance d between the two distributions created by the two classes of S is 91 
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interpreted as the observer’s ability to differentiate between the two kinds of S. Participants 92 

select a response by comparing the sensory evidence x with a response criterion c, choosing R = 93 

-1 if the sensory evidence x is smaller than the response criterion, and R = 1 otherwise. 94 

Confidence ratings are chosen by comparing the same sample of sensory evidence 𝑥 against a set 95 

of 2 ×  𝑛 −  1 confidence criteria, 𝜃1,  𝜃2,  𝜃3, … ,  𝜃2×𝑛−1. For example, if there are four 96 

confidence categories, participants are assumed to select a response R of 1 and a confidence level 97 

of 3 if the sensory evidence x is smaller than the outermost response criterion θ7, but at the same 98 

time greater than the second outermost response criterion θ6.  99 

Table 1 

Table of mathematical notation and terminology 

Symbol Description or terminology 

S Stimulus class 

R Discrimination response about the stimulus class 

C Confidence judgment 

n Number of options given by the confidence scale   

x Sensory evidence about S 

d distance between the two distributions of evidence created by the two different 

stimulus classes, interpreted as the observer’s ability to differentiate between the 

two stimulus classes 

d′ Estimate of d based on R 

dmeta Meta-d′: Estimate of d based on C 

c Response criterion for the discrimination judgment 

θ Criterion for confidence judgments 

m Metacognitive efficiency parameter within the independent truncated Gaussian 

model 

y Confidence decision variable 

Figure 1 100 

The hypothetical signal detection theoretic model underlying meta-d′ 101 
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 102 

Note. The hypothetical signal detection theoretic model describing the primary task underlying 103 

meta-d′ (Maniscalco & Lau, 2012, 2014). To estimate meta-d′, it is assumed that the same 104 

evidence is available for selecting a response for the discrimination task and for selecting a 105 

confidence judgement. Primary task responses and confidence categories are assumed to form an 106 

ordered set of responses delineated by a set of criteria θ.  107 

Meta-d′ vs. generative models of confidence 108 

According to Maniscalco and Lau (2014), the meta-d′/d′ method only makes assumptions 109 

about the cognitive architecture underlying the discrimination choice, but meta-d′/d′ does not 110 

require an explicit assumption about the generative model underlying confidence judgments. 111 

However, it should be noted that the hypothetical signal detection model underlying meta-d′ is 112 

not dissimilar to the approach taken in studies that aim to identify the generative model 113 

underlying confidence judgments. The reason is that the estimation methods available to fit 114 

meta–d′ require the computation of the probability of the different levels of confidence given 115 

stimulus and discrimination response 𝑝(𝐶|𝑅, 𝑆). Notably, static generative models of confidence 116 
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are usually defined by a probability density of confidence ratings and discrimination task 117 

responses 𝑝(𝐶, 𝑅|𝑆) (e.g. Adler & Ma, 2018; Aitchison et al., 2015; Rausch et al., 2018, 2020; 118 

Shekhar & Rahnev, 2021). This means what distinguishes the meta-d′ approach from generative 119 

models of confidence is whether the probability density is conditioned on the discrimination 120 

response or whether the discrimination response is modelled as well. According to both the 121 

conditioned maximum likelihood procedure proposed by Maniscalco and Lau (2014) and the 122 

Bayesian Markov Chain Monte Carlo (MCMC) method by Fleming (2017), the probability for a 123 

specific degree of confidence given stimulus and response 𝑝(𝐶|𝑅, 𝑆) is given by 124 

𝑝(𝐶 = 𝑖|𝑆, 𝑅 = −1) =
∫ 𝜙𝜇=𝑑𝑚𝑒𝑡𝑎×𝑆×0.5(𝑦) 𝑑𝑦

𝜃𝑛−𝑖+1

𝜃𝑛−𝑖

∫ 𝜙𝜇=𝑑𝑚𝑒𝑡𝑎×𝑆×0.5(𝑦) 𝑑𝑦
𝜃𝑛

−∞

 

(1) 

𝑝(𝐶 = 𝑖|𝑆, 𝑅 = 1) =  
∫ 𝜙𝜇=𝑑𝑚𝑒𝑡𝑎×𝑆×0.5(𝑦) 𝑑𝑦

𝜃𝑛+𝑖

𝜃𝑛+𝑖−1

∫ 𝜙𝜇=𝑑𝑚𝑒𝑡𝑎×𝑆×0.5(𝑦) 𝑑𝑦
∞

𝜃𝑛

 

(2) 

where 𝜙 indicates the Gaussian density function with mean 𝜇 and variance of 1, θ0 is -∞, 125 

θ2n is ∞, and 𝑑𝑚𝑒𝑡𝑎 is meta-d′. According to Maniscalco and Lau (2014), the location of the 126 

central confidence criterion 𝜃𝑛 depends on the perceptual sensitivity of the observer d′ as well as 127 

on the primary task criterion c and is given by 𝜃𝑛 =  𝑐 × 𝑑𝑚𝑒𝑡𝑎 ÷ 𝑑′. According to Fleming’s 128 

method, 𝜃𝑛  is identical to c. The formulae (1) and (2) show two important features of the meta-129 

d′/d′ method. First, the formulae for 𝑝(𝐶|𝑆, 𝑅) are identical to the cumulative truncated gaussian 130 

distribution function (Kristensen et al., 2020). Second, the formulae do not include x, the sensory 131 

evidence used to make the discrimination choice: This means that the random process underlying 132 

confidence judgments only depends on the outcome of the random process underlying the 133 

discrimination task decision, i.e., the response 𝑅, but when conditioned on R, it does not depend 134 

on the state of the random process generating the discrimination task decision.  135 
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The independent truncated Gaussian model (ITG) 136 

Here, we present a generative model of confidence that is set up to be consistent with the 137 

probability functions used to estimate meta-d′: the independent truncated Gaussian model (ITG, 138 

see Fig. 2). Conceptually, ITG reflects a cognitive mechanism where confidence judgments are 139 

based on information generated independently from the sensory evidence used to make the 140 

perceptual decision. However, according to ITG, confidence judgments can only be informed by 141 

information corroborating the perceptual decision; contradicting information is not available. 142 

ITG is identical to standard signal detection theory as far as the discrimination task response is 143 

concerned. For the choice about the confidence, according to ITG, there is a separate decision 144 

variable for confidence y. The confidence decision variable y is sampled from a truncated 145 

Gaussian distribution, with the location parameter equal to 𝑆 × 𝑑 × 0.5 × 𝑚  and a scale 146 

parameter of 1. The parameter d quantifies the perceptual ability of the observer and is 147 

equivalent to d′ in standard signal detection theory. The parameter m quantifies metacognitive 148 

efficiency, which is measured by meta-d′/d′. Notably, y is sampled independently from x, the 149 

sensory evidence used in the discrimination decision (see Fig. 3 for a visualisation of the 150 

distribution of x and y). The Gaussian distribution of y is truncated in a way that it is impossible 151 

to sample evidence that contradicts the original decision: If R = -1, the distribution is truncated to 152 

the right of 𝜃𝑛. If R = 1, the distribution is truncated to the left of 𝜃𝑛. Because Maniscalco and 153 

Lau (2014) and Fleming (2017) defined 𝜃𝑛  differently, there are also two slightly different 154 

versions of ITG. ITG reproduces the probability density of confidence given stimulus and 155 

response specified by Maniscalco and Lau (2014) if the distribution of y is truncated at 𝑐 × 𝑚, 156 

while to reproduce the probability density of confidence given stimulus and response in Fleming 157 

(2017), the distribution must be truncated at c. Just as in the signal detection model, confidence 158 
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ratings are chosen by comparing the confidence decision variable y against a set of 2 ×  𝑛 −  1 159 

confidence criteria, 𝜃1,  𝜃2,  𝜃3, … ,  𝜃2×𝑛−1.  160 

Figure 2 161 

Bayesian graphical model of the independent truncated Gaussian model (ITG) 162 

 163 

Note. Version of ITG to reproduce the probabilities of confidence categories given stimulus and 164 

response underlying the maximum likelihood method devised by Maniscalco and Lau (2014). Sj,, 165 

Rj, and Cj are stimulus class, response, and confidence in trial j, respectively , d is the 166 

discrimination sensitivity parameter, c is the discrimination criterion, θ is the confidence 167 

criterion, m is the metacognitive efficiency parameter, xj is the sensory evidence in trial j, and 168 

yj is the confidence decision variable in trial j. 𝑡𝑟𝑁𝑎
𝑏 indicates a Gaussian distribution which is 169 

truncated at the left side and at b at the right side. Following the convention by Lee and 170 

Wagenmakers (2013), continuous variables are depicted as circles and discrete variables as 171 

squares, observed variables are shaded, unobserved variables not shaded, stochastic dependence 172 

is indexed by single borders, and deterministic dependence by double borders.  173 
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Figure 3 174 

Two-dimensional distributions of sensory evidence x and confidence decision variable y 175 

according to the independent truncated Gaussian model (ITG) 176 

 177 

Note. Fig. 3 is based on a simulation of the ITG model, using Fleming’s model specification, and 178 

assuming the following parameters: d = 2, c = 0.5, m = 0.5.  179 

The implications of the similarity of the meta-d′ method and the ITG model with respect 180 

to the interpretation of meta-d′/d′ has to our knowledge not yet been explored: In standard signal 181 

detection theory, measures of sensitivity are only guaranteed to be independent from response 182 

criteria if the underlying SDT model is a reasonable approximation of the underlying processes 183 

(Green & Swets, 1966; Macmillan & Creelman, 2005; Wickens, 2002). Unfortunately, examples 184 

of generative models have been presented where meta-d′ is not robust against a variation of 185 

discrimination task performance and confidence criteria: According to a model where the 186 

confidence criteria are affected by lognormal noise, meta-d′/d′ is influenced by confidence 187 
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criteria (Shekhar & Rahnev, 2021). According to a Bayesian model where confidence is affected 188 

by beta-distributed metacognitive noise, meta-d′/d′ depends on discrimination task performance 189 

(Guggenmos, 2021). Thus, the question arises how robust the control that meta-d′/d′ provides 190 

over discrimination task performance, discrimination task criterion, and confidence criteria is if 191 

the space of different generative models underlying confidence is varied more widely.   192 

Rationale of the present study 193 

In the present study, we investigated whether meta-d′/d′ is influenced by discrimination 194 

task performance, discrimination task criterion, and confidence criteria. For this purpose, we 195 

simulated artificial data while systematically varying the underlying generative model of 196 

confidence. Because the number of generative models of confidence proposed in the literature is 197 

far greater than what can be investigated in a single study (e.g. Desender et al., 2021; Fleming & 198 

Daw, 2017; Guggenmos, 2022; Mamassian & de Gardelle, 2021; Rausch et al., 2018; 199 

Maniscalco & Lau, 2016; Shekhar & Rahnev, 2021; Reynolds et al., 2020; Hellmann et al., 200 

2023; Boundy-Singer et al., 2022; Zhu et al., 2023; Moran et al., 2015; Pereira et al., 2021), for 201 

the purpose of the present study, we restricted our analysis to models where the discrimination 202 

task decision is made consistent with signal detection theory and thus applying a meta-d′/d′ 203 

model is considered appropriate (Fleming & Lau, 2014). Besides two versions of the 204 

independent truncated gaussian model, one equivalent to the hypothetical SDT models used by 205 

Maniscalco and Lau (2014) and one equivalent to the hypothetical SDT models used by Fleming 206 

(2017), we used five different models reflecting different cognitive mechanisms how confidence 207 

judgments may be generated (see Table 2). For each simulation, we computed meta-d′/d′ using 208 

three different methods: 1) the conditioned maximum likelihood method proposed by 209 

Maniscalco and Lau (2012, 2014), 2) the Bayesian MCMC method described by Fleming (2017), 210 
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and 3) conditioned maximum likelihood estimation using Fleming’s specification of the 211 

hypothetical SDT model. 212 

Table 2 

List of cognitive models in which we analyzed the behavior of meta-d′/d′ 

Model  Reference Conceptual interpretation of the model  

Independent 

truncated Gaussian 

model  

Maniscalco and 

Lau (2014) 

Fleming (2017) 

Information used for confidence is generated 

independently from the evidence used for the choice. 

Evidence contradicting the original choice cannot be 

collected.  

Postdecisional 

accumulation model 

Pleskac and 

Busemeyer 

(2010) 

After the choice, accumulation of sensory evidence 

continues for a fixed time interval 

Gaussian noise 

model 

Maniscalco and 

Lau (2016) 

Confidence is informed by the same sensory evidence 

as the task decision, but confidence is affected by 

additive Gaussian noise. 

Response-congruent 

evidence model 

Maniscalco et al. 

(2016) 

Peters et al. 

(2017) 

Confidence is informed only by evidence supporting 

the selected decision option; evidence in favor of the 

other option is ignored 

Confidence boost 

model 

Mamassian and 

de Gardelle 

(2021) 

Confidence is informed by the evidence used for the 

choice and by evidence collected in parallel to the 

choice. In addition, confidence is affected by additive 

Gaussian noise.   

Weighted evidence 

and visibility model 

Rausch et al. 

(2018, 2020, 

2021) 

Confidence is informed by the evidence used for the 

choice as well as by a parallel estimate of the difficulty 

of the task. In addition, confidence is affected by 

additive Gaussian noise.   

We expected that meta-d/d′ is independent from discrimination task performance, 213 

discrimination task criteria, and confidence criteria when the generative model is the independent 214 

truncated Gaussian model. At least for some of the alternative models, we expected that meta-215 
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d′/d′ depends on discrimination task performance, discrimination task criterion, and confidence 216 

criteria.  217 

Simulation 1  218 

Method  219 

Model specification  220 

We simulated data using seven different generative models:  221 

i. the independent truncated Gaussian model with the Gaussian distribution 222 

truncated at the discrimination task criterion multiplied with metacognitive 223 

efficiency (consistent with the hypothetical SDT model proposed by Maniscalco 224 

and Lau, 2014), 225 

ii. the independent truncated Gaussian model with the Gaussian distributions 226 

truncated at the discrimination task criterion (consistent with the hypothetical 227 

SDT model used by Fleming (2017), 228 

iii.  the Gaussian noise model, 229 

iv. the postdecisional accumulation model,  230 

v. the weighted evidence and visibility model, 231 

vi. the confidence boost model, and  232 

vii. the response-congruent evidence model. 233 

For all seven models, we assumed that participants select a discrimination response R ∈ 234 

{-1, 1} about the stimulus class S ∈ {-1, 1} as well as a confidence judgment on a five-point 235 

scale that the response about the stimulus is correct C ∈ {1, 2, 3, 3, 5}. According to all seven 236 

models, a decision about the stimulus is made by comparing the sensory evidence x against the 237 
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decision criterion c. Participants respond R = -1 if x < c and R = 1 if x > c. The sensory evidence 238 

x is modelled as a random sample from a Gaussian distribution:  239 

𝑥 ~ 𝑁(𝜇 =  𝑆 × 0.5 × 𝑑, 𝜎 = 1) 240 

The more sensitive the observer is to the stimulus, the greater is the distance d between 241 

the centres of the distributions created by the two stimuli. Thus, d is interpreted as the ability of 242 

the observer’s perceptual system to differentiate between the two kinds of S. The different 243 

models are characterised by ways how the confidence decision variable y is generated. A specific 244 

degree of confidence is determined by comparing y against a set of confidence criteria. To be 245 

consistent with standard SDT, we assumed separate of confidence criteria for each of the two 246 

response options. For all models, we assumed for simplicity that confidence criteria are placed 247 

symmetrically around the central confidence criterion 𝜃5 with the placement of criteria 248 

determined by the parameter τ. For the version of ITG modelled after Maniscalco and Lau’s 249 

method, 𝜃5 was set to 𝑐 × 𝑚. For the version of ITG modelled after Fleming’s method, as well as 250 

for the five alternative models of confidence, 𝜃5 was set to c. For R = -1, the other confidence 251 

criteria are located at 𝜃1 =  𝜃5 − 2 × 𝜏, 𝜃2 =  𝜃5 − 1.5 × 𝜏, 𝜃3 =  𝜃5 − 𝜏,  and 𝜃4 =  𝜃5 −252 

0.5 ×  𝜏. For R = 1, the confidence criteria are located at 𝜃6 =  𝜃5 + 0.5 ×  𝜏, 𝜃7 =  𝜃5 +  𝜏, 𝜃8 =253 

 𝜃5 + 1.5 ×  𝜏, and 𝜃9 =  𝜃5 + 2 ×  𝜏.  Each criterion delineates between two adjacent confidence 254 

criteria, e.g., the observer reports confidence C = 2 if the response R is -1 and y fell between 𝜃1 255 

and 𝜃2, or if R = 1 and y fell between 𝜃6 and 𝜃7. Thus, τ represents how liberally or 256 

conservatively participants place their confidence criteria.  257 

Gaussian noise model. Conceptually, the Gaussian noise model reflects the idea that 258 

confidence is informed by the same sensory evidence as the task decision, but confidence is 259 

affected by additive Gaussian noise. Therefore, the confidence decision variable y is also 260 
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sampled from a Gaussian distribution, with a mean equal to the sensory evidence x and a 261 

standard deviation σc, an additional free parameter.  262 

𝑦 ~ 𝑁(𝜇 = 𝑥, 𝜎 = 𝜎𝑐) 263 

Postdecisional accumulation model. The postdecisional accumulation model was 264 

inspired by two-stage signal detection theory, according to which accumulation of sensory 265 

evidence is continued after the decision for a fixed time interval (Pleskac & Busemeyer, 2010). 266 

To ensure comparability with the other models, we used a model that represents the conceptual 267 

idea of ongoing accumulation of evidence but does not model reaction time data as well. 268 

According to PDA, the confidence decision variable y is sampled from a Gaussian distribution:  269 

𝑦 ~ 𝑁(𝜇 =  𝑥 + 𝑆 × 0.5 × 𝑑 × 𝑏, 𝜎 = √𝑏) 270 

The free parameter b indicates the amount of postdecisional accumulation relative to the 271 

amount of evidence available at the time of the discrimination decision. The standard deviation 272 

equals the square root of b because both the mean and the variance of the decision variable 273 

increase linearly with time in drift diffusion processes (Pleskac & Busemeyer, 2010).  274 

Weighted evidence and visibility model. The conceptual idea underlying the weighted 275 

evidence and visibility model is that the observer combines evidence about the choice-relevant 276 

feature of the stimulus with the strength of evidence about choice-irrelevant features to select one 277 

out of several confidence categories (Rausch et al., 2018, 2020, 2021). Evidence about choice-278 

irrelevant features of the stimulus can improve confidence judgement because they allow the 279 

observer to estimate the reliability of the percept more precisely (Rausch & Zehetleitner, 2019). 280 

To express this idea in formal terms, the WEV model assumes that y is sampled from a Gaussian 281 

distribution with the standard deviation σc:  282 

𝑦 ~ 𝑁(𝜇 =  (1 −  𝑤)  ×  𝑥 + 𝑤 × 𝑑 ×  𝑅, 𝜎 = 𝜎𝑐)  283 
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The standard deviation 𝜎𝑐 quantifies the amount of unsystematic variability contributing 284 

to confidence judgments but not to identification judgments. The unsystematic variability may 285 

stem from different sources, including the uncertainty in the estimate of stimulus strength or the 286 

noise inherent to metacognitive processes. The factor R ensures that strong stimuli tend to shift 287 

the location of the distribution in a way that high confidence is more likely, and likewise, weak 288 

stimuli tend to shift the location of the distribution in a way that the probability of low 289 

confidence increases. 290 

Confidence boost model. The confidence boost model represents the idea that the 291 

confidence decision variable y is only partially based on the information used during the 292 

perceptual decision (Mamassian & de Gardelle, 2021). The confidence boost reflects information 293 

used for confidence judgments which was not used for perceptual decision. For this purpose, the 294 

model includes the parameter α, which quantifies the degree to which observer base their 295 

confidence judgments on information available for the perceptual decision. If α = 0, confidence 296 

judgments are exclusively based on information already used for the perceptual decisions; if α = 297 

1, the observer has direct access to the original stimulus, and not just the noisy sensory evidence 298 

used to make the perceptual decision. In addition, there is again confidence noise superimposed 299 

on the confidence decision variable σc. Because Mamassian and de Gardelle (2021) conceived 300 

their model for confidence forced choice paradigms, the model was slightly adapted to be 301 

applicable for tasks where meta-d′/d′ is typically used. In the version of the model used in the 302 

present study, y is sampled from a Gaussian distribution with the standard deviation σc:  303 

𝑦 ~ 𝑁(𝜇 =  0.5 × 𝑆 × 𝑑 +  𝑥 × (1 − 𝛼), 𝜎 = 𝜎𝑐)  304 

Response-congruent evidence model. The model was inspired by the confidence model 305 

proposed by Peters et al. (2017). Conceptually, the model represents the idea that observers use 306 



META-D′ ACROSS GENERATIVE MODELS OF CONFIDENCE 17 

all available sensory information to make the primary task decision, but for confidence 307 

judgments, they only consider evidence consistent with the selected decision and ignore evidence 308 

against the decision (Maniscalco et al., 2016; Odegaard, Grimaldi, et al., 2018; Samaha et al., 309 

2016; Zylberberg et al., 2012). In our version of the model, the response-congruent evidence 310 

model assumes two separate samples of sensory evidence collected in each trial, each belonging 311 

to one possible identity of the stimulus:  312 

𝑥1 ~ 𝑁(𝜇 =  (1 − 𝑆) × 0.25 × 𝑑, 𝜎 = √1/2) 313 

𝑥2 ~ 𝑁(𝜇 =  (1 + 𝑆) × 0.25 × 𝑑, 𝜎 = √1/2) 314 

The sensory evidence used for the discrimination choice is 𝑥 = 𝑥2 − 𝑥1, which implies 315 

that the discrimination decision is equivalent to standard signal detection theory. The confidence 316 

decision variable depends on the response selected by the observer:  317 

𝑦 = {
−𝑥1, 𝑖𝑓  𝑅 = −1

𝑥2, 𝑖𝑓  𝑅 = 1
 318 

Simulations 319 

Table 3 lists all parameters we used for our simulations. The parameters were chosen to 320 

investigate the behaviour of meta-d′/d′ across a decent range while at the same time avoiding 321 

extreme frequencies of events, which are known to lead to unstable behaviour (Barrett et al., 322 

2013). For each generative model, we performed one simulation for each possible combination 323 

of parameters. In each simulation, we randomly simulated 10^6 discrimination responses and 324 

confidence ratings for both stimuli. Then, we computed meta-d′/d′ using three different methods:  325 

i. the conditioned maximum-likelihood method as described by Maniscalco and Lau 326 

(2014),  327 

ii. the Bayesian MCMC method used by Fleming (2017),  328 
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iii. a conditioned maximum-likelihood method that uses the specification of the 329 

hypothetical SDT model used by Fleming (2017).  330 

A simulation was only included into the results if the estimated standard error of meta-d′ 331 

was below .005. All analyses were conducted using R (R Core Team, 2020). 332 

Table 3 

Parameters for each generative model of confidence 

Model Para- 

meter 

values used 

during 

simulations 

Interpretation of the parameter 

All models d 0.5, 1.0, 1.5, 

2.0, 2.5 

sensitivity of the observer to discriminate 

between the two stimulus classes 

 c 0, 0.25, 0.5, 1, 

1.5, 2 

criterion for the primary task response 

 τ 0.5, 1.0, 1.5, 

2.0, 2.5 

placement of confidence criteria 

Independent 

truncated Gaussian 

model 

 

m 0.5, 1, 1.5 Amount of signal available for metacognition 

relative to the signal available for the 

discrimination choice  

Gaussian noise 

model  
𝜎𝑐 0.5, 1, 2 amount of noise superimposed on rating 

response 

Postdecisional 

accumulation 

model 

 

b 0.1, 0.5, 1 amount of postdecisional accumulation 

relative to the evidence available at the time 

of the discrimination decision 

Weighted evidence 

and visibility model  
𝜎𝑐 0.5, 2 amount of Gaussian noise superimposed on 

rating response 

 w 0.25, 0.75 degree to which confidence relies on sensory 

evidence about the identity or on strength of 

evidence about identification-irrelevant 

features of the stimulus 

Confidence boost 

model 
𝜎𝑐 0.5, 2 amount of normal noise superimposed on 

rating response 

 α 0.25, 0.75 degree to which observer has direct access to 

the original stimulus when making the 

confidence judgment 

 333 
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Conditioned maximum likelihood estimation of Maniscalco and Lau’s model. To 334 

estimate meta-d′ based on conditioned maximum likelihood estimation, we used a translation of 335 

the MATLAB code provided by Brian Maniscalco 336 

(http://www.columbia.edu/~bsm2105/type2sdt, last accessed 2021-09-20) to R. The algorithm 337 

involved the following computational steps: First, the frequency of each confidence category was 338 

determined depending on the stimulus class and the accuracy of the response. To correct for 339 

extreme proportions, 1 (2𝑛)⁄  was added to each cell of the frequency table. Second, 340 

discrimination sensitivity 𝑑′ and discrimination criterion c were calculated using standard 341 

formulae 342 

𝑑’ =  Φ−1(
𝑛𝑆1𝑅1

𝑛𝑆1
) − Φ−1(

𝑛𝑆0𝑅1

𝑛𝑆0
) (3) 

𝑐 =  −
1

2
× (Φ−1(

𝑛𝑆1𝑅1

𝑛𝑆1
) + Φ−1(

𝑛𝑆0𝑅1

𝑛𝑆0
) ) (4) 

with 𝑛𝑆1 the number of trials when 𝑆 = 1, 𝑛𝑆0 the number of trials when 𝑆 =  −1, 𝑛𝑆1𝑅1 the 343 

number of trials when 𝑆 = 1 and 𝑅 = 1, 𝑛𝑆0 the number of trials when 𝑆 = −1, 𝑛𝑆0𝑅1 the number 344 

of trials when 𝑆 = −1 and 𝑅 =  1, and Φ−1 the quantile function of the standard Gaussian 345 

distribution. The third step involved fitting the meta-d′ model. For this purpose, a maximum 346 

likelihood optimization procedure was used with respect to the probability of confidence given 347 

stimulus and response as well as the parameters determined at previous steps, i.e., 𝑑′ and 𝑐. Model 348 

fitting involved a free parameter for meta-d′ 𝑑𝑚𝑒𝑡𝑎 as well as the rating criteria 𝜃1, 𝜃2, …, 𝜃𝑛−1, 349 

𝜃𝑛+1, 𝜃𝑛+2, …, 𝜃2𝑛−1. To reproduce the original method by Maniscalco and Lau, 𝜃𝑛 was fixed at 350 

𝑐 × 𝑑𝑚𝑒𝑡𝑎 ÷ 𝑑′ . To enforce that the criteria were ordered, all free criteria were parametrized as 351 

the log of the distance to the adjacent criterion. Model fitting was performed in two steps: First, a 352 

coarse grid search was used to identify promising starting values. Second, the five best parameter 353 

http://www.columbia.edu/~bsm2105/type2sdt
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sets were used as initial values for an Nelder-Mead optimization algorithm as implemented in the 354 

R function optim (Nelder & Mead, 1965). We restarted the optimization four times, using the 355 

previously found result as initial value for the next iteration to prevent the algorithm from getting 356 

stuck in a local minimum. Standard errors associated with the estimate of meta-d′ were obtained 357 

by inverting the Hessian matrix returned from optim. 358 

Conditioned maximum likelihood estimation of Fleming’s model. To fit meta-d′/d′ 359 

using conditioned maximum likelihood estimation and a model specification equivalent to the 360 

method used by Fleming (2017), we used the same algorithm as for Maniscalco and Lau’s model 361 

specification with the exception that 𝜃𝑛 was fixed at c. 362 

Bayesian Markov Chain Monte Carlo. To estimate meta-d′/d′ using Bayesian MCMC, 363 

we used R code provided by Steve Fleming (https://github.com/metacoglab/HMeta-d, last 364 

accessed 2022-10-22), which relies on the free software jags to sample from the posterior 365 

distribution (Plummer, 2003). For more details on the underlying Bayesian estimation procedure, 366 

see Fleming (2017). Just as for standard meta-d′, discrimination performance d′ and 367 

discrimination criterion 𝑐 were computed first using formulae (3) and (4) and then submitted to 368 

jags as constants. The Bayesian estimation procedure was used only for the meta-d′/d′ and 369 

confidence criteria. For this purpose, the absolute frequency of each confidence rating given 370 

stimulus and response 𝑓(𝐶|𝑆, 𝑅) was modelled as a multinomial distribution ℳ,  371 

𝑓(𝐶|𝑆, 𝑅)  ∼ ℳ(𝑛 =  𝑛𝑆𝑅 , 𝑝 = 𝑝(𝐶|𝑆, 𝑅)) (5) 

where 𝑛𝑆𝑅 is the number of trials with stimulus S and response R, and 𝑝(𝐶|𝑆, 𝑅) calculated using 372 

formulae (1) and (2). 𝜃𝑛 was fixed at 𝑐. 𝑝(𝐶|𝑆, 𝑅) depends on the free parameters 𝑑𝑚𝑒𝑡𝑎 and a 373 

set of criteria 𝜃. The priors for the parameters were specified as follows: 374 

𝜃1,2,…,𝑛−1  ∼ 𝑡𝑟𝒩(𝜇 = 0, 𝜎 = √0.5, 𝑎 =  − ∞, 𝑏 =  𝑐) (6) 

https://github.com/metacoglab/HMeta-d
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𝜃𝑛+1,𝑛+2,…,2×𝑛−1  ∼ 𝑡𝑟𝒩(𝜇 = 0, 𝜎 = √0.5, 𝑎 =  𝑐, 𝑏 =  ∞) 

𝑑𝑚𝑒𝑡𝑎~𝒩(𝜇 =  𝑑’, 𝜎 =  √2)  

where 𝜃1,2,…,𝑛−1 indicates the set of confidence criteria when the response was -1, 375 

𝜃𝑛+1,𝑛+2,…,2×𝑛−1 indicates the set of confidence criteria when the response was 1, 𝑡𝑟𝒩 indicates 376 

a truncated gaussian distribution with a location parameter 𝜇, scale parameter 𝜎, lower bound a, 377 

and upper bound b, and 𝑑𝑚𝑒𝑡𝑎 is meta-d′. These priors reflect the standard settings. Sampling 378 

was performed in three separate Markov Chains to allow computation of Gelman and Rubin's 379 

convergence diagnostic �̂� (Gelman & Rubin, 1992). For each chain, we drew 100,000 samples 380 

from the posterior distribution, saving every 10th sample to remove autocorrelations in the 381 

Markov chain. If �̂� was larger than 1.1, the simulation was excluded from the analysis.  382 

Transparency and openness. All data and analysis code are available at 383 

https://osf.io/72uds. This study’s design and its analysis were not pre-registered. 384 

Results 385 

Discrimination sensitivity 386 

Fig. 4 shows the pattern of meta-d′/d′ as estimated using the conditioned maximum 387 

likelihood method proposed by Maniscalco and Lau (2012) as a function of the generative model 388 

underlying the simulated data and discrimination sensitivity. Meta-d′/d′ was not perfectly 389 

constant across different levels of discrimination sensitivity in any of the seven generative 390 

models. For the two independent truncated Gaussian models, meta-d′/d′ was associated with 391 

discrimination sensitivity only for a relatively small subset of simulations. In contrast, for the 392 

postdecisional accumulation model, the Gaussian noise model, the response-congruent evidence 393 

model, and the weighted evidence and visibility model, Fig. 4 shows multiple lines that have a 394 

https://osf.io/4pfrs/?view_only=eb251ff0faab42779b025fe05b0d7b39
https://osf.io/4pfrs/?view_only=eb251ff0faab42779b025fe05b0d7b39
https://osf.io/72uds


META-D′ ACROSS GENERATIVE MODELS OF CONFIDENCE 22 

non-zero slope, meaning that meta-d′/d′ depended on discrimination sensitivity for the majority 395 

of parameter sets.  396 

Figure 4 397 

Meta-d′-d′ based on conditioned maximum likelihood estimation and model specification 398 

by Maniscalco and Lau, as function of discrimination sensitivity and generative model of 399 

confidence  400 

 401 
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Note. Each dot represents one simulation with one combination of parameters. Lines connect 402 

simulations that differ only with respect to the parameter quantifying discrimination sensitivity 403 

and identical parameter sets otherwise. Lines parallel to the horizontal indicate that meta-d′/d′ is 404 

independent from discrimination sensitivity. Note that the y-Axes are different for each 405 

generative model of confidence.  406 

Fig. 5 shows the pattern of meta-d′/d′ estimated using Fleming’s Bayesian MCMC 407 

method, again as a function of the generative model underlying the simulated data and 408 

discrimination sensitivity. Meta-d′/d′ was constant across levels of discrimination performance 409 

when the data was generated according to the independent truncated Gaussian model with 410 

distributions truncated at the discrimination criterion c. When the same model was used but with 411 

distributions truncated at c × m, there were some parameter sets where discrimination sensitivity 412 

affected meta-d′/d′. Again, for the postdecisional accumulation model, the Gaussian noise model, 413 

the response-congruent evidence model, and the weighted evidence and visibility model, 414 

discrimination sensitivity affected meta-d′/d′ ratios for a large number of parameter sets. When 415 

we repeated these analyses using conditioned maximum likelihood estimation but calculating the 416 

probability of confidence given stimulus and response following Fleming (2017), the results 417 

were visually indistinguishable from Fig. 5.  418 

Figure 5 419 

Meta-d′/d′ based on Bayesian MCMC estimation and Fleming’s model specification, as 420 

function of discrimination sensitivity and generative model of confidence 421 
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 422 

Note. Each dot represents one simulation. Lines connect simulations that differ only with respect 423 

to the parameter quantifying discrimination sensitivity and identical parameter sets otherwise. 424 

Lines parallel to the horizontal indicate that meta-d′/d′ is independent from discrimination 425 

sensitivity. Note that the y-Axes are different for each generative model of confidence.  426 

Discrimination bias 427 

The relationship between meta-d′/d′ and discrimination bias across different generative 428 

models is depicted in Fig. 6 for Maniscalco and Lau’s original conditioned maximum likelihood 429 
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method and in Fig. 7 for Fleming’s Bayesian MCMC method. Fig. 6 shows that meta-d′/d′ 430 

estimated using the original method depends on discrimination bias for each single generative 431 

model of confidence. Fig. 7 shows that meta-d′/d′ estimated using the Bayesian MCMC method 432 

is independent from discrimination bias only if the data is generated according to the 433 

independent truncated Gaussian model with the distributions truncated at the discrimination 434 

criterion. Again, meta-d′/d′ depends on the discrimination criterion according to all other 435 

generative models of confidence. Finally, when meta-d′/d′ was estimated using conditioned 436 

maximum likelihood estimation but using the model specification Fleming (2017), the results 437 

were the same as in Fig. 6.   438 

Figure 6 439 

Meta-d′/d′ based on conditioned maximum likelihood estimation and Maniscalco and 440 

Lau’s model specification as function of discrimination bias and generative model of confidence  441 
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 442 

Note. Each dot represents one simulation. Lines connect simulations that differ only with respect 443 

to the parameter quantifying discrimination bias and identical parameter sets otherwise. Lines 444 

parallel to the horizontal indicate that meta-d′/d′ is independent from discrimination bias. Note 445 

that the y-Axes are different for each generative model of confidence.  446 

Figure 7 447 

Meta-d′/d′ based on MCMC estimation and Fleming’s model specification as function of 448 

discrimination bias and generative model of confidence  449 
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 450 

Note. Each dot represents one simulation. Lines connect simulations that differ only with respect 451 

to the parameter quantifying discrimination bias and identical parameter sets otherwise. Lines 452 

parallel to the horizontal indicate that meta-d′/d′ is independent from discrimination bias. Note 453 

that the y-axes are different for each generative model of confidence.  454 

Confidence criteria 455 

The relationship between meta-d′/d′ and confidence criterion placement across different 456 

generative models of confidence is depicted in Fig. 8 for Maniscalco and Lau’s original 457 



META-D′ ACROSS GENERATIVE MODELS OF CONFIDENCE 28 

conditioned maximum likelihood method and in Fig. 9 for Fleming’s Bayesian MCMC method. 458 

Fig. 8 shows that meta-d′/d′ estimated using the original method is never completely independent 459 

from confidence criterion placement. Nevertheless, for the two independent truncated Gaussian 460 

models, meta-d′/d′ was associated with confidence criterion placement for a relatively small 461 

subset of simulated parameter sets. Fig. 9 shows that meta-d′/d′ estimated using Fleming’s 462 

method is independent from confidence criterion placement only if the data is generated 463 

according to the independent truncated Gaussian model with the distributions truncated at the 464 

discrimination criterion. For all other generative models of confidence, meta-d′/d′ depends on 465 

confidence criterion placement. Finally, when meta-d′/d′ was estimated using conditioned 466 

maximum likelihood estimation but with Fleming’s model specification, the results were the 467 

same as in Fig. 9.   468 

Figure 8 469 

Meta-d′/d′ based conditioned maximum likelihood estimation and Maniscalco and Lau’s 470 

model specification as function of confidence criterion placement and generative model of 471 

confidence  472 
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 473 

Note. Each dot represents one simulation. Lines connect simulations that differ only with respect 474 

to the parameter determining confidence criterion placement and identical parameter sets 475 

otherwise. Lines parallel to the horizontal indicate that meta-d′/d′ is independent from confidence 476 

criterion placement. Note that the y-Axes are different for each generative model of confidence.  477 

Figure 9 478 

Meta-d′/d′ based on MCMC estimation and Fleming’s model specification as function of 479 

confidence criterion placement and generative model of confidence  480 
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 481 

Note. Each dot represents one simulation. Lines connect simulations that differ only with respect 482 

to the parameter determining confidence criterion placement and identical parameter sets 483 

otherwise. Lines parallel to the horizontal indicate that meta-d′/d′ is independent from confidence 484 

criterion placement. Note that the y-Axes are different for each generative model of confidence.  485 

Recovering metacognitive efficiency parameters 486 

Finally, we investigated if estimates of meta-d′/d′ recover the metacognitive efficiency 487 

parameter m of the independent truncated Gaussian model. Specifically, meta-d′/d′ estimated 488 
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using the original SDT model specification by Maniscalco and Lau (2014) was expected to 489 

recover the m parameter in the ITG model with the distribution truncated at the objective 490 

discrimination criterion c multiplied with m. Meta-d′/d′ estimated using the model specification 491 

by Fleming (2017) should recover the m parameter in the ITG model with the distribution 492 

truncated at c. Fig. 10 shows that meta-d′/d′ based on Bayesian MCMC estimation and Fleming’s 493 

model specification indeed recovered the m parameter of the corresponding version of the ITG 494 

model. However, meta-d′/d′ using the model specification by Maniscalco and Lau (2014) did not 495 

always recover m in the corresponding ITG model. Specifically, meta-d′/d′ overestimated m 496 

when the discrimination criterion was at least .75 (i.e., a considerable bias for one of the two 497 

stimuli), when τ was 0.5 (i.e. liberal confidence criterion placement), and when m was either 0.5 498 

or 1.5 (and thus metacognitive ability and perceptual ability were not the same).  499 

Figure 10 500 

Meta-d′/d′ as a function of the metacognitive efficiency parameter m, discrimination bias 501 

parameter θ, and confidence criterion placement parameter τ. 502 

 503 



META-D′ ACROSS GENERATIVE MODELS OF CONFIDENCE 32 

Note. Left panel: ITG model with distributions truncated at the discrimination criterion c 504 

multiplied with m. Accordingly, meta-d′/d′ values on the y-axis were computed using the 505 

original method by Maniscalco and Lau (2014). Right panel: ITG model with distributions 506 

truncated at the discrimination criterion c. Accordingly, meta-d′/d′ values on the y-axis were 507 

computed using the Bayesian MCMC method by Fleming (2017). Colours indicate different 508 

objective discrimination criteria. Symbols indicate different placement of confidence criteria.  509 

Discussion 510 

Simulation 1 showed that meta-d′/d′ provides imperfect control over discrimination 511 

performance, discrimination bias, and confidence criteria: Only when the data were simulated 512 

according to the independent truncated Gaussian model with the distributions truncated at the 513 

discrimination bias, and when meta-d′/d′ was estimated using the model specification used by 514 

Fleming (2017), meta-d′/d′ was constant across discrimination performance, discrimination bias, 515 

and confidence criteria in all simulations. Notably, the control of discrimination sensitivity, bias, 516 

and confidence criteria is sensitive to the finer details of model specification: When we simulated 517 

data with distributions truncated at the discrimination bias multiplied by the metacognitive 518 

efficiency parameter, the generative model consistent with Maniscalco and Lau’s method, meta-519 

d′/d′ based on Fleming’s model specification was no longer constant as a function of 520 

discrimination performance, discrimination bias, and confidence criteria across all simulated 521 

parameter sets. When the data were simulated according to one of the other generative models of 522 

confidence, meta-d′/d′ was associated with discrimination bias, discrimination sensitivity and 523 

confidence criterion placement for numerous simulations.  524 

While Simulation 1 shows that meta-d′/d′ depends in principle on discrimination 525 

performance, discrimination bias and confidence criteria according to various different models of 526 
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confidence, it is still unclear whether the effect is large enough to be relevant in practice. In 527 

particular, the contamination of meta-d′/d′ by discrimination sensitivity seemed to be relatively 528 

small compared to the contamination by discrimination bias and confidence criteria. However, in 529 

order to simulate the expected correlations between model parameters and meta-d′/d′ according 530 

to different confidence models, it is necessary to specify the distributions of the model 531 

parameters across subjects. Unfortunately, the sample sizes of previous modelling studies have 532 

been generally too small sample to reasonably estimate the distribution of model parameters 533 

across subjects. 534 

Simulation 2 535 

To investigate how the relationships observed in Simulation 1 may translate into 536 

plausible effect sizes, we fitted all seven models of confidence used in Simulation 1 to the data 537 

from Experiment 2 by Rouault et al. (2018), an open data set available from the confidence 538 

database (Rahnev et al., 2020). Rouault et al. (2018)’s data were chosen because a large sample 539 

is necessary for stable estimates of correlation coefficients (Schönbrodt & Perugini, 2013). We 540 

then used the parameter sets obtained by model fitting to simulate new data to estimate the 541 

correlation between meta-d′/d′ and discrimination sensitivity, discrimination bias and confidence 542 

criteria implied by each generative model of confidence.   543 

Method 544 

Experimental task 545 

Rouault et al.’s data consists 497 subjects who participated in an online dot numerosity 546 

discrimination task with 210 trials per subject. In each trial, participants were presented with a 547 

fixation cross for 1 s. Two black boxes filled with differing numbers of randomly positioned 548 

white dots were then presented for 0.3 s. One box was always half-filled (313 dots out of 625 549 
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positions), while the other box contained an increased number of dots compared to the first box. 550 

The position of the box with the higher number of dots was pseudo-randomised across all trials. 551 

To maintain a constant level of performance during the experiment and across participants, a 552 

staircase was used to adapt the number of extra dots in the target box. The staircase started with a 553 

number of 70 extra dots and was a two-down one-up staircase procedure with equal step-sizes 554 

for steps up and down. The step-size was calculated in log-space, changing by ± 0.4 for the first 555 

5 trials, ± 0.2 for the next 5 trials and ± 0.1 for the rest of the task. After 0.3 s, the dots 556 

disappeared, leaving the black boxes on screen until participants indicated which box had the 557 

higher number of dots by keyboard button press. Then, subjects were asked to report their 558 

confidence in their response on a 6-point rating scale with verbal descriptions (certainly wrong, 559 

probably wrong, maybe wrong, maybe correct, probably correct, certainly correct). A detailed 560 

description of the study is provided by Rouault et al. (2018).  561 

Model fitting 562 

All seven generative models of confidence used in Simulation 1 were fitted to the 563 

combined distributions of responses and confidence judgments separately for each single 564 

participant. The fitting procedure involved the following computational steps: First, the 565 

frequency of each confidence level was calculated for each of the two stimulus options and each 566 

of the response option. For each model, the set of parameters was determined that minimized the 567 

negative log-likelihood of the data given the model. For this purpose, we used a coarse grid 568 

search to identify five promising sets of starting values for the optimization procedure. Then, 569 

minimization of the negative log-likelihood was performed using a general SIMPLEX 570 

minimization routine (Nelder & Mead, 1965) for each set of starting values. To avoid local 571 

minima, the optimization procedure was restarted four times.  572 
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To assess the relative quality of the candidate models, we calculated the Bayes 573 

information criterion (Schwarz, 1978) and the AICc (Burnham & Anderson, 2002), a variant of 574 

the Akaike information criterion (Akaike, 1974) using the negative likelihood of each model fit 575 

with respect to each single participant and the trial number. For statistical testing, we compared 576 

the mean AICc and BIC using standard t-tests with p-values adjusted for multiple comparisons 577 

using Holm’s correction.  578 

Simulation 579 

We simulated one new data set for each of the seven generative models of confidence, 580 

using the parameter sets we obtained during model fitting, using the same number of subjects as 581 

as in the empirical data and 10.000 trials per subject. Then, we estimated meta-d′/d′ two times for 582 

each simulated subject using conditioned maximum likelihood estimation, one time with 583 

Maniscalco and Lau’s model specification, and one time with Fleming’s model specification. 584 

Because meta-d′/d′ is not normally distributed (Rausch & Zehetleitner, 2023), we assessed the 585 

correlation between each parameter of each generative model and the logarithm of meta-d′/d′. 586 

We repeated the analysis using unstandardized linear regression slopes with centred parameters 587 

as predictors and log(meta-d′/d′) as criterion. All p-values were corrected for multiple 588 

comparisons using Holm’s correction.  589 

Results 590 

Formal model comparisons 591 

Formal model comparisons revealed that the best fits to the data were obtained by the two 592 

versions of the independent truncated Gaussian model, both in terms of AICc, and BIC. The 593 

difference between the two versions of the independent truncated Gaussian model was 594 

negligible, MΔAIC = MΔBIC = 0.02, t(496) = 1.46, p = .290. The fit of both independent truncated 595 
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Gaussian models was each significantly better than those of the five alternative models in terms 596 

of AIC and BIC, all p’s < .001, although the mean difference was quite small, MΔAIC’s and 597 

MΔBIC’s ≥ -0.59, all p’s < .001.  598 

Correlations between model parameters and simulated meta-d′/d′ 599 

Supplementary Table 1 provides the correlation coefficients between each estimated 600 

parameter of the different confidence model and log(meta-d′/d′). Figs. 11 and 12 show that as 601 

expected, log(meta-d′/d′) is strongly correlated with all model parameters intended to reflect 602 

metacognitive efficiency, i.e. σc, m, a, and α. For the two versions of the independent gaussian 603 

truncated model, no significant correlation between log(meta-d′/d′) and discrimination sensitivity 604 

d, discrimination criterion c, or any of the ten confidence criteria was observed, independently 605 

from the specification of the hypothetical SDT model underlying meta-d′/d′.  However, we found 606 

a significant large correlation between discrimination sensitivity d and log(meta-d′/d′) for the 607 

response-congruent evidence model and a medium-sized correlation between discrimination 608 

sensitivity d and log(meta-d′/d′) for the weighted evidence and visibility model. For the Gaussian 609 

noise model, a moderate correlation between d and log(meta-d′/d′) was significant only when 610 

meta-d′/d′ was estimated using Maniscalco and Lau’s model specification, but not for Fleming’s 611 

model specification. On the contrary, for the postdecisional accumulation model, the correlation 612 

between d and log(meta-d′/d′) was significant only when meta-d′/d′ was estimated based on 613 

Fleming’s model, but not with Maniscalco and Lau’s model. A significant medium-sized 614 

correlation between log(meta-d′/d′) and discrimination bias c was detected only for the response-615 

congruent evidence model when meta-d′/d′ was estimated using Fleming’s model specification. 616 

Concerning confidence criteria, we found a very strong correlation between log(meta-d′/d′) and 617 

six out of ten confidence criteria for the confidence boost model, seven out of ten for the Gaussian 618 
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noise model, and two out of ten for the postdecisional accumulation model. In addition, we 619 

detected medium-sized correlations between two confidence criteria in the weighted evidence and 620 

visibility model.  621 

The analysis of regression slopes revealed that for the confidence boost model and the 622 

Gaussian noise model, there were only small changes in meta-d′/d′ as a function of confidence 623 

criteria, but these changes were very consistent across subjects, resulting in many significant small 624 

effects. For the other models and parameters, the interpretation was essentially the same as in the 625 

correlation analysis (see Supplementary Table 2).  626 

Figure 11 627 

Correlation between meta-d′/d′ estimated using Maniscalco and Lau’s model 628 

specification and model parameters estimated from Rouault et al. (2018)’s Exp. 2 as a function 629 

of different generative models of confidence. 630 
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 631 

Note. Error bars indicate 95% CI.  632 

Figure 12 633 

Correlation between log-transformed meta-d′/d′ estimated using Fleming’s model 634 

specification and model parameters model parameters estimated from Rouault et al. (2018)’s 635 

Exp. 2 as a function of different generative models of confidence. 636 
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 637 

Note. Error bars indicate 95% CI.  638 

Discussion 639 

Fitting different models of confidence to Rouault et al. (2018)’s data showed that the two 640 

versions of the independent truncated Gaussian model provide a reasonable fit to confidence in a 641 

dot numerosity discrimination task. Importantly, the model comparisons reported in the present 642 

study should be only interpreted as preliminary, because the data set only included 200 trials per 643 

subject, which is much smaller than the norm in modelling studies. It should also be noted that 644 
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the statistical properties of different experimental tasks may be quite different, suggesting that 645 

the observation that ITG performs well in one data set does not imply that ITG will also perform 646 

well in other experimental tasks. Nevertheless, we think that ITG should be considered as a 647 

series candidate model in future studies and should be routinely included in future comparisons 648 

of confidence models.  649 

The simulation using the parameters of the independent truncated Gaussian model 650 

obtained during model fitting showed that both versions of meta-d′/d′ were independent of 651 

discrimination sensitivity, discrimination bias, and confidence criteria, suggesting that the 652 

differences between the two versions of the independent truncated Gaussian model are small 653 

enough not to be practically relevant, at least with distributions of parameters as observed in this 654 

particular experiment. However, for each of the five alternative models of confidence, we found 655 

at least one strong correlation with either discrimination sensitivity or one of the confidence 656 

criteria. The correlations with discrimination sensitivity parameters are noteworthy because 657 

Rouault et al. used a staircase to keep accuracy constant. This means that staircases still leave 658 

enough variance in discrimination sensitivity parameters to produce a large correlation with 659 

discrimination sensitivity for the response-congruent evidence model, medium-sized correlations 660 

for the weighted evidence and visibility model, or small-to-medium correlations for the gaussian 661 

noise model and the postdecisional accumulation model.  662 

General discussion 663 

The results of the present study suggests that whether or not meta-d′/d′ provides control 664 

over discrimination performance, discrimination bias, and confidence criteria strongly depends 665 

on the generative model of confidence: Only when the data was simulated according to the 666 

independent truncated Gaussian model (ITG) with the distributions truncated at the 667 
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discrimination bias, and when meta-d′/d′ was estimated using the model specification used by 668 

Fleming (2017), meta-d′/d′ was perfectly constant across discrimination performance, 669 

discrimination bias, and confidence criteria across all simulations. When we simulated data using 670 

the parameters estimated from Rouault et al. (2018)’s Exp. 2, no difference between the two 671 

versions of ITG were observed, suggesting that the difference between the two versions of ITG 672 

may not always be relevant in practice. However, when the data was simulated not using ITG, 673 

but the Gaussian noise model, the postdecisional accumulation model, the weighted evidence and 674 

visibility model, the confidence boost model, or the response-congruent evidence model, meta-675 

d′/d′ depended on discrimination sensitivity, discrimination bias, and confidence criterion 676 

placement for many simulations. Simulations using parameters obtained by fitting empirical data 677 

showed that the expected correlations between meta-d′/d′ and model parameters vary widely 678 

across different generative model of confidence and specific parameters. Nevertheless, for each 679 

generative model other than ITG, there was at least one medium-sized correlation with either 680 

discrimination sensitivity or one of the confidence criteria, suggesting that meta-d′/d′ is 681 

associated with discrimination sensitivity and confidence criteria under realistic assumptions 682 

about model parameters.  683 

Relation between meta-d′/d′ and generative models of confidence 684 

Meta-d′/d′ has been considered to rely only on the assumption of a specific cognitive 685 

architecture underlying the discrimination decision, but to be free from assumptions about the 686 

decision variable underlying the confidence decision (Maniscalco & Lau, 2014). In contrast, the 687 

main finding of the present study is that meta-d′/d′ is in fact not free from assumptions about the 688 

generative model underlying confidence judgments. The reason is that meta-d′/d′ depends on 689 

discrimination sensitivity, discrimination bias, and confidence criteria when the data is simulated 690 
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according to the Gaussian noise model, the weighted evidence and visibility model, the 691 

confidence boost model, the postdecisional accumulation model or the response-congruent 692 

evidence model. Previous studies revealed two additional models where meta-d′/d′ is 693 

confounded, the Bayesian beta-distributed noise model (Guggenmos, 2021) and the lognormal 694 

noise model (Shekhar & Rahnev, 2021). Importantly, the present study exceeds those studies in 695 

showing that generative models where meta-d′/d′ is contaminated by discrimination sensitivity, 696 

discrimination bias and confidence criteria not only exist, but the same result is obtained 697 

according to most generative models of confidence. Meta-d′/d′ succeeds in controlling for 698 

discrimination sensitivity, discrimination bias and confidence criteria when the data is generated 699 

according to the independent truncated gaussian model. Thus, it seems that the control meta-d′/d′ 700 

provides is highly specific to the independent truncated Gaussian model. Our findings are 701 

consistent with the assertion that discrimination sensitivity, discrimination bias and confidence 702 

criteria can only be controlled based on estimating the underlying generative model of 703 

confidence (Guggenmos, 2022). We cannot prove that no generative model other than ITG exists 704 

where meta-d′/d′ performs satisfactorily. However, the control over discrimination sensitivity, 705 

discrimination bias, and confidence criteria fails for a large variety of different generative 706 

models, which is why it is reasonable to assume that meta-d′/d′ is unlikely to provide effective 707 

control in other models which were not examined so far. Overall, this means that meta-d′/d′ from 708 

now on should be regarded as a model-based measure of metacognitive efficiency, and 709 

researchers who consider using meta-d′/d′ need to ascertain if their data can be adequately 710 

described by ITG.  711 
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Evidence for the independent truncated Gaussian model?  712 

Because the adequacy of meta-d′/d′ depends on the assumption of ITG as generative 713 

model, the question is raised if ITG is a decent models of human confidence judgments. Our 714 

analysis of the data of Rouault et al. (2018) is to our knowledge the first (albeit preliminary) 715 

evidence that data sets exists which are adequately described by ITG. Unfortunately, previous 716 

studies comparing generative models of confidence did not make the link between meta-d′/d′ and 717 

generative model of confidence, which is why ITG has not been included into formal model 718 

comparisons previously (e.g. Maniscalco & Lau, 2016; Rausch et al., 2018, 2020, 2021; Shekhar 719 

& Rahnev, 2021, 2022). Future modelling studies are necessary to investigate how frequently 720 

ITG is an adequate description of human confidence. However, there is more evidence for some 721 

qualitative predictions of ITG. According to ITG, confidence judgments are subject to a 722 

response-congruent confirmation bias because it is impossible to sample a confidence decision 723 

variable that contradicts the discrimination decision. In accordance with ITG, previous studies 724 

reported that observers’ tend to neglect contradictory evidence when they report confidence 725 

(Peters et al., 2017; Samaha et al., 2016; Zylberberg et al., 2012), although no evidence for a 726 

response-congruent confirmation bias was observed in other experimental paradigms (Rausch et 727 

al., 2020; Shekhar & Rahnev, 2022), suggesting a response-congruent confirmation bias many 728 

not be a universal feature of human confidence across paradigms. However, there are multiple 729 

mathematical ways to represent bias in favour of response-congruent evidence. When we 730 

implemented a response-congruent evidence bias in a different way, resulting in the model we 731 

refer to as response-congruent evidence model, meta-d′/d′ very strongly correlated with 732 

discrimination sensitivity. This finding implies that it is not sufficient that the generative process 733 

underlying the confidence data is characterised by a similar conceptual idea as ITG - if meta-d′/d′ 734 
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is to control for by discrimination sensitivity, discrimination bias, and confidence criteria, ITG 735 

must be (at least a close approximation of) the generative model of the data.  736 

An important limitation shared between ITG and all alternative models investigated in the 737 

present study is that the dynamics of the decision process is not accounted for. This is 738 

problematic because there is a large body of evidence that confidence judgments depend on the 739 

dynamics of decision making (Pleskac & Busemeyer, 2010). Specifically, Pleskac and 740 

Busemeyer (2010) showed that when participants are under time pressure when making the 741 

decision, metacognitive efficiency is increased. Moran et al. (2015) showed that confidence 742 

judgments are related to the reaction time of confidence judgments. Last but not least, there is on 743 

average  medium-sized correlation between confidence judgments and reaction time across a 744 

wide range of studies (Rahnev et al., 2020). Given the close relationship between decision 745 

dynamics and confidence, it may be more apt to model confidence with sequential sampling 746 

models rather than signal detection theory (Desender et al., 2022; Hellmann et al., 2023; Pereira 747 

et al., 2021; Pleskac & Busemeyer, 2010; Ratcliff & Starns, 2009, 2013; Reynolds et al., 2020).   748 

Measuring metacognitive efficiency using meta-d′/d′ 749 

The findings of the present study imply that whenever the independent truncated 750 

Gaussian model is a good description of the data, meta-d′/d′ will be the appropriate measure of 751 

metacognitive efficiency. However, without any information about the generative model 752 

underlying confidence judgments, researchers should not assume that by using meta-d′/d′ to 753 

measure metacognitive efficiency, a potential contamination by discrimination sensitivity, 754 

discrimination bias, or confidence criteria has been ruled out. We recommend to use meta-d′/d′ 755 

only for tasks where the independent truncated Gaussian model is a suitable description of the 756 

data. There is a limited set of experimental tools available to reduce the potential impact of 757 
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discrimination sensitivity, discrimination bias, and confidence criteria when measuring 758 

metacognitive efficiency using meta-d′/d′. To control for discrimination sensitivity, researchers 759 

have used staircases to keep task performance within a specific range (Rahnev & Fleming, 760 

2019). However, Simulation 2 suggests that staircases are not sufficient to control for 761 

discrimination sensitivity if the data is generated according to the weighted evidence and 762 

visibility model or the response-congruent evidence model. It might be possible to reduce the 763 

impact of discrimination criteria and confidence criteria by careful instructions and training with 764 

the task, although it is unlikely that instruction and training is sufficient to eliminate the effect of 765 

criteria.  766 

Measuring metacognitive efficiency by meta-d′/d′ is also problematic because meta-d′/d′ 767 

does not take the dynamics of the decision process into account. Consequently, properties of the 768 

dynamical decision process such as response caution might be misinterpreted as effects on 769 

metacognitive efficiency (Desender et al., 2022). Overall, the findings of the present study 770 

combined with other recent studies (Desender et al., 2022; Guggenmos, 2021; Shekhar & 771 

Rahnev, 2021) imply that without any additional information, meta-d′/d′ cannot be 772 

unambiguously interpreted in terms of metacognitive efficiency, suggesting that a reanalysis of 773 

previously published studies using meta-d′/d′ and possibly a critical reinterpretation is necessary.  774 

Alternatives to meta-d′/d′ for measuring metacognitive efficiency 775 

Whenever ITG is not a decent description of confidence in a particular study, researchers 776 

need an alternative to meta-d′-d′ to measure metacognitive efficiency. Traditionally, 777 

metacognition has been assessed using measures that also do not explicitly rely on specific 778 

generative models of confidence, such as gamma correlation coefficients (Nelson, 1984), 779 

confidence slopes (Yates, 1990), phi correlations (Rounis et al., 2010), or area under type 2 ROC 780 
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curves (Fleming et al., 2010). However, none of these measures is designed to control for 781 

discrimination performance and thus, by definition, none of these measures are measures of 782 

metacognitive efficiency.  783 

There are several model-based alternative measures of metacognitive efficiency: First, 784 

one available method is to fit a lognormal noise model, in which metacognitive ability is 785 

quantified by the lognormal noise parameter σmeta (Shekhar & Rahnev, 2021, 2022). The 786 

lognormal noise model provides a decent account for confidence in a low contrast orientation 787 

discrimination task as well as a letter numerosity discrimination task (Shekhar & Rahnev, 2022). 788 

Second, in two-alternative forced choice confidence paradigms, it is possible to quantify 789 

metacognitive efficiency using the confidence boost model (Mamassian & de Gardelle, 2021). 790 

The measure of metacognitive efficiency η is computed by dividing the variance of the 791 

confidence noise of a hypothetical ideal observer by the variance of confidence noise estimated 792 

for the participant. Besides, two-alternative forced choice confidence paradigms may be an 793 

attractive way to eliminate the impact of confidence criteria (Barthelmé & Mamassian, 2009). 794 

Finally, relying on two-stage signal detection theory (Pleskac & Busemeyer, 2010; Yu et al., 795 

2015), Desender et al. (2022) proposed the v-ratio to measure metacognitive efficiency. The v-796 

ratio divides the drift rate estimated from confidence judgments by the drift rate estimated from 797 

discrimination responses and reaction time.  798 

Notably, just as meta-d′/d′ is only a good measure of metacognitive efficiency when the 799 

data confirm to the independent truncated Gaussian model, σmeta, η, and v-ratio are expected to 800 

control for discrimination sensitivity, discrimination bias and confidence criteria only when the 801 

data confirm to the corresponding generative model. To our knowledge, it has not yet been 802 

investigated how sensitive σmeta, η, and v-ratio are to a contamination from discrimination 803 
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sensitivity, discrimination bias and confidence criteria are when generative model underlying 804 

confidence judgment is varied. The findings of the present study are consistent with the view that 805 

measures of metacognitive efficiency provide control over discrimination sensitivity, 806 

discrimination bias and confidence criteria only if the generative model of confidence is 807 

correctly identified and the corresponding measure of metacognitive efficiency is used 808 

(Guggenmos, 2022). Unfortunately, for the time being, there is no consensus about the 809 

computational principles underlying confidence judgments (Rahnev et al., 2022). This means 810 

that a good practice for future studies will be to first use cognitive modelling to identify the 811 

generative model underlying confidence judgments in a specific paradigm empirically, and then 812 

use the corresponding model-based measure of metacognitive efficiency (Guggenmos, 2021; 813 

Mamassian & de Gardelle, 2021; Shekhar & Rahnev, 2021). When data in a specific task is well 814 

accounted for by the independent truncated Gaussian model, meta-d′/d′ is the appropriate way to 815 

measure metacognitive efficiency. However, when data is better described by an alternative 816 

model of confidence, researchers need to use a measure of metacognitive efficiency that 817 

corresponds to the model that is the best explanation of the data. Because researchers have 818 

implicitly fitted versions of the independent truncated Gaussian model all along when they used 819 

meta-d′/d′, it does not seem too far-fetched that researchers will begin to regularly fit alternative 820 

generative models of confidence as well. It will be necessary to develop open and easy-to-use 821 

software packages to make fitting a variety of confidence models available to a larger part of the 822 

field (e.g., Rausch & Hellmann, 2023). Sometimes it will be impossible to identify the true 823 

generative model underlying confidence judgments for a specific data set, either because the 824 

number of trials is too low or because of model mimicry. In these cases, it will be prudent to 825 

perform a robustness analysis to show that the results of the study do not depend on specific 826 
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analysis decisions (Gelman & Loken, 2014; Steegen et al., 2016). This means that the modelling 827 

analysis needs to be repeated with all models of confidence that cannot be ruled out empirically 828 

to show that results are robust across models of confidence.  829 

It is very difficult, and perhaps impossible, to come up with a novel measure of 830 

metacognitive efficiency with all the attractive properties that meta-d′/d′ was supposed to have, 831 

i.e., controlling for discrimination sensitivity, discrimination bias, and confidence criteria 832 

without requiring a specific generative model of confidence. The present study does not rule out 833 

the possibility that a future study will be able to find such a measure. However, given the results 834 

of the present study, we are sceptical that such a measure can ever be found; we recommend 835 

rigorous testing of whether any newly proposed measure of metacognitive efficiency effectively 836 

controls for discrimination performance, discrimination bias, and confidence criteria.  837 

Conclusion 838 

We showed that meta-d′/d′ is not free from assumptions about the generative model 839 

underlying confidence judgments. Only if the data is generated according to the independent 840 

truncated gaussian model, meta-d′/d′ guarantees control over discrimination performance, 841 

discrimination bias, and confidence criteria. The control fails according to a wide range of 842 

alternative generative models of confidence; the expected correlation with discrimination 843 

sensitivity and confidence criteria varies across alternative generative model but can be very 844 

large. Consequently, researchers who want to measure metacognitive efficiency using meta-d′/d′ 845 

need to examine if their data can be reasonably described by the independent truncated Gaussian 846 

model. 847 
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